力学实验班
一、专业简介
力学学科起源于1952年成立的基础科学部力学教研室,1959年力学专业招生,1985年成立工程力学系。1998年建成固体力学博士点,2003年建成力学博士后流动站,2005年获力学一级学科博士学位授予权。
本学科培养人才具有良好的人文、科学及工程素养,掌握坚实宽广的力学基础理论和系统的专门知识,具备工程结构分析软件的应用和开发能力,掌握现代力学实验与测试技术。关注力学学科前沿发展和知识交叉应用,能在机械、土木、航空航天、材料等领域从事科学研究、技术创新及工程设计,能围绕从事的研究方向对其科学问题和工程技术问题进行系统深入的创新研究。
力学学科在多年的建设中,将力学与复杂装备、新型材料、航空航天、先进制造、海洋工程等领域融合贯通。在非线性力学、计算力学、结构优化设计与可靠性、重大装备中的关键动力学与控制、新型材料力学、智能材料与结构力学、流体力学及应用等方向取得了一批先进的研究成果,培养了一大批杰出的校友。
二、培养目标
本专业旨在培养掌握现代力学理论、先进计算方法和实验技术,具有扎实力学基础知识与系统专业知识,具备力学分析和研究应用能力、工程实践和组织协调能力、创新能力和国际视野,具有良好的人文素养、科学精神、高度社会责任感、德才兼备,能在航空航天、机械、土木等工程科学与技术领域从事力学基础理论研究和工程技术创新的领军人才。
1. 掌握现代力学理论、先进计算方法和实验技术
2. 具有扎实数学力学基础知识与系统力学专业知识
3. 具备力学分析和研究应用能力、工程实践
4. 组织协调能力
5. 创新能力和国际视野
6. 具有良好的人文素养、科学精神、高度社会责任感、德才兼备
三、毕业要求
本专业毕业学生要求掌握以下十二项核心能力:
1.工程知识:能够将数学、自然科学、力学基础和专业知识用于解决复杂工程结构力学问题。
2.问题分析:能够应用数学、自然科学基本原理,并通过文献研究,识别、表达、分析工程结构中的相关力学问题,以获得有效结论。
3.设计/开发解决方案:能够设计解决复杂工程结构相关力学问题的方案,并能够在设计环节中体现创新意识,考虑法律、健康、安全、文化、社会以及环境等因素。
4.研究:能够基于科学原理并采用科学方法以及现代力学实验与测试技术,对复杂工程结构的力学问题进行研究,包括设计实验、分析与解释数据、并通过信息综合得到合理有效的结论。
5.使用现代工具:能够在针对复杂工程结构的力学研究中开发、选择与使用恰当的技术、资源、现代工程工具和信息技术工具,并了解其局限性。
6.工程与社会:能够评价复杂工程结构相关力学问题解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的责任。
7.环境和可持续发展:能够理解和评价针对解决复杂工程结构相关力学问题的工程实践对环境、社会可持续发展的影响。
8.职业规范:具有人文社会科学素养、社会责任感和工程职业道德。
9.个人和团队:具有在多学科团队中发挥作用的能力。
10.沟通:能够就工程问题与业界同行及社会公众进行有效沟通和交流,包括撰写报告和设计文稿、陈述发言、清晰表达或回应指令。并具备一定的国际视野,能够在跨文化背景下进行沟通和交流。
11.项目管理:理解并掌握工程管理原理与经济决策方法,并能在多学科环境中应用。
12.终身学习:具有自主学习和终身学习的意识,有不断学习和适应发展的能力。
“培养目标-毕业要求” 矩阵表
毕业要求 培养目标 |
1 工程 知识 |
2 问题 分析 |
3 设计/ 开发 解决 方案 |
4 研究 |
5 使用 现代 工具 |
6 工程 与 社会 |
7 环境 和可 持续 发展 |
8 职业 规范 |
9 个人 和 团队 |
10 沟通 |
11 项目 管理 |
12 终身 学习 |
1具备厚实的科学与工程基础,扎实的工程力学专业知识和技能,能应用专业知识和技能解决实际问题,具备力学分析和研究应用能力、工程实践和组织协调能力、创新能力和国际视野。 |
● |
● |
● |
● |
● |
|
|
|
|
|
|
|
2具有前瞻性、战略性、全局性、创新性思维、研究能力、国际视野的未来物联网领域业界或学界的高素质人才。 |
|
|
● |
● |
● |
|
|
|
● |
● |
● |
● |
3遵守职业道德规范,具有正确的世界观、人生观、价值观,具有良好的人文素养、社会责任感、法制意识和终身自主学习意识,成为具有理想信念的崇业者。 |
|
|
|
|
|
● |
● |
● |
|
● |
|
● |
用符号●进行标注
四、学制、毕业学分要求及学位授予
1.本科基本学制4年,弹性学习年限3-6年,按照学分制度管理。
2.工程力学专业学生毕业最低学分数为170学分,其中各类别课程及环节要求学分数如下表:
课程类别 |
通识必修 |
学门核心 |
学类核心 |
专业核心 |
个性培养 |
通识选修 |
实践环节 |
合计 |
学分数 |
34 |
26 |
32 |
17 |
17 |
8 |
36 |
170 |
3.学生修满培养方案规定的必修课、选修课及有关环节,达到规定的最低毕业学分数,《国家学生体质健康标准》测试成绩达标,德、智、体、美、劳全面发展,即可毕业。根据《湖南大学学士学位授予工作细则》(湖大教字[2018]22号),满足学位授予条件的,授予工学学学士学位。
五、课程设置及学分分布
(一)通识教育课程(必修34学分+选修8学分)
通识教育课程包括必修和选修两部分。通识选修课程8学分按《湖南大学通识教育选修课程修读办法》实施,通识必修课程如下:
编码 |
课程名称 |
学分 |
备注 |
GE01150 |
毛泽东思想和中国特色社会主义理论体系概论 |
3 |
|
GE01174 |
习近平新时代中国特色社会主义思想概论 |
2 |
|
GE01185 |
思想道德与法治 |
3 |
|
GE01155(-162) |
形势与政策 |
2 |
|
GE01153 |
中国近现代史纲要 |
3 |
|
GE01154 |
马克思主义基本原理 |
3 |
|
GE01151 |
思政实践 |
2 |
|
GE01012(-015) |
大学英语 |
8 |
实行弹性学分、动态分层、模块课程教学,总学分为8学分,设置4、6、8三级学分基本要求,不足学分可以通过相关外语水平等级测试或外语学科竞赛成绩获取。 |
GE01163 |
计算与人工智能概论 |
4 |
|
GE01089(-092) |
体育 |
4 |
|
合计 |
34 |
|
(二)学门核心课程(26学分)
编码 |
课程名称 |
学分 |
备注 |
GE03025 |
高等数学A(1) |
5 |
|
GE03026 |
高等数学A(2) |
5 |
|
GE03003 |
线性代数A |
3 |
|
GE03004 |
概率论与数理统计A |
3 |
|
GE03005 |
普通物理A(1) |
3 |
|
GE03006 |
普通物理A(2) |
3 |
|
GE03007(-008) |
普通物理实验A |
2 |
|
ME03001 |
工程化学 |
2 |
|
合计 |
26 |
|
(三)学类核心课程(32学分)
编码 |
课程名称 |
学分 |
备注 |
ME04017 |
机械工程图学(1) |
3 |
|
ME04002 |
机械工程图学(2) |
2 |
|
ME06148N |
复变函数与积分变换 |
2 |
|
EM06024 |
数理方法 |
2 |
|
EM04009 |
机械设计基础B |
3 |
|
ME04020 |
理论力学 |
4 |
|
ME04021 |
材料力学 |
4 |
|
EM04012 |
固体力学基础 |
3 |
|
EM04008N |
弹性力学 |
4 |
|
ME04035 |
热工学基础 |
2 |
|
GE02059 |
电工电子学 |
3 |
|
合计 |
32 |
|
(四)专业核心课程(17学分)
编码 |
课程名称 |
学分 |
备注 |
EM05004 |
计算力学 |
4 |
|
EM05011 |
振动力学 |
3.5 |
|
EM04006 |
流体力学 |
4 |
|
EM05012 |
实验力学 |
3.5 |
|
EM05013 |
现代力学概论 |
2 |
|
合计 |
17 |
|
(五)个性培养(17学分)
公共选修课(5学分)
编码 |
课程名称 |
学分 |
备注 |
EM06044 |
人工智能与力学 |
2 |
|
EM06022 |
连续介质力学 |
3 |
|
模块一:基础前沿方向(12学分)
编码 |
课程名称 |
学分 |
备注 |
EM06021 |
冲击动力学 |
2 |
|
EM06039 |
智能材料与结构力学 |
2 |
|
EM06040 |
接触力学 |
2 |
|
EM06041 |
表界面力学 |
2 |
|
EM06043 |
生物力学基础 |
2 |
|
ME06130 |
计算方法 |
2 |
|
EM06023 |
分析力学 |
2 |
|
EM06011N |
断裂力学 |
2 |
|
EM06025 |
板壳力学 |
2 |
|
ME06004 |
多体动力学 |
2 |
|
EM06026 |
计算材料学 |
2 |
|
EM06027 |
空气动力学 |
3 |
|
ME06144 |
计算流体力学 |
2 |
|
ME06131 |
非线性振动 |
2 |
|
EM05006 |
塑性力学 |
3 |
|
EM06028 |
表面失稳力学 |
2 |
|
EM06029 |
超材料结构力学 |
2 |
|
模块二:工程应用方向(12学分)
编码 |
课程名称 |
学分 |
备注 |
EM06042 |
可靠性设计方法 |
2 |
|
ME04019 |
工程材料 |
2 |
|
ME06088 |
增材制造技术(双语) |
2 |
|
ME06120 |
人体损伤生物力学 |
2 |
|
ME04027 |
控制工程基础 |
2 |
|
EM06030 |
现代工程CAE分析 |
2 |
|
EM06031 |
结构优化设计 |
2 |
|
EM05003 |
结构力学 |
3 |
|
EM06032 |
复合材料力学与结构设计 |
2 |
|
EM06012 |
钢筋混凝土结构设计基础及CAE分析 |
2 |
|
EM06033 |
钢结构原理 |
2 |
|
EM06034 |
振动控制基础 |
2 |
|
EM06035 |
结构动力学 |
2 |
|
EM06036 |
机械结构强度学 |
2 |
|
EM06037 |
结构疲劳与可靠性 |
2 |
|
注:个性培养学分,其中8学分可在全校范围内跨专业选修。
(六)实践环节(36学分)
编码 |
课程名称 |
学分 |
备注 |
GE09048(-049) |
军事理论与军事技能 |
3 |
|
GE09057 |
金工实习 |
3 |
|
GE09055 |
电工电子实训 |
2 |
|
EM10008 |
专业实习 |
2 |
|
ME10052 |
创新创业 |
2 |
|
ME10050 |
专业认知实习 |
1 |
|
ME10044 |
机械设计基础课程设计 |
1 |
|
ME10045 |
力学创新实验 |
2 |
|
ME10046 |
创新设计与制作 |
2 |
|
EM10010 |
力学建模及仿真实践 |
4 |
|
EM10013 |
科技论文写作与沟通 |
2 |
|
EM10014 |
先进材料与结构测试技术 |
2 |
|
ME10120 |
毕业设计(论文) |
10 |
|
合计 |
36 |
|
六、课程体系与毕业要求的对应关系矩阵
“修读课程-毕业要求”矩阵表
课程名称 |
毕业要求 |
1 工程 知识 |
2 问题 分析 |
3 设计/ 开发 解决 方案 |
4 研究 |
5 使用 现代 工具 |
6 工程 与 社会 |
7 环境 和可持续发展 |
8 职业 规范 |
9 个人 和 团队 |
10 沟通 |
11 项目 管理 |
12 终身 学习 |
毛泽东思想和中国特色社会主义理论体系概论 |
|
|
|
|
|
M |
|
M |
M |
M |
|
|
习近平新时代中国特色社会主义思想概论 |
|
|
|
|
|
|
H |
H |
M |
M |
|
M |
思想道德与法治 |
|
|
|
|
|
H |
|
M |
M |
M |
|
L |
形势与政策 |
|
|
|
|
|
|
H |
M |
M |
M |
|
H |
中国近现代史纲要 |
|
|
|
|
|
M |
|
M |
L |
M |
|
|
马克思主义基本原理 |
|
|
|
|
|
|
|
M |
M |
H |
M |
M |
思政实践 |
|
|
|
|
|
M |
|
M |
H |
H |
|
M |
大学英语 |
|
|
|
|
|
L |
|
M |
M |
H |
|
H |
计算与人工智能概论 |
L |
H |
|
|
H |
|
|
|
M |
|
|
M |
体育 |
|
|
|
|
|
|
L |
M |
H |
H |
|
M |
高等数学A |
|
H |
|
M |
L |
|
|
|
|
|
|
|
概率论与数理统计A |
|
H |
|
M |
L |
|
|
|
|
|
|
|
线性代数A |
|
H |
|
M |
L |
|
|
|
|
|
|
|
普通物理A |
|
H |
|
M |
|
|
|
M |
|
|
|
|
普通物理实验A |
|
|
H |
|
M |
|
|
L |
M |
|
|
|
工程化学 |
|
|
|
|
|
L |
M |
|
|
|
|
|
机械工程图学 |
H |
|
|
|
H |
L |
|
|
|
|
|
|
复变函数与积分变换 |
|
H |
|
M |
L |
|
|
|
|
|
|
|
数理方法 |
|
H |
|
M |
L |
|
|
|
|
|
|
|
理论力学 |
H |
|
|
|
|
|
|
|
|
|
|
|
材料力学 |
H |
|
|
|
|
|
|
|
|
|
|
|
固体力学基础 |
H |
H |
|
H |
|
H |
|
|
|
|
|
H |
弹性力学 |
|
M |
|
|
|
|
|
|
|
|
|
|
热工学基础 |
|
|
|
|
|
M |
M |
|
|
|
|
|
机械设计基础B |
H |
|
H |
|
H |
M |
|
L |
|
|
|
|
电工电子学 |
H |
|
|
|
|
|
|
|
|
|
|
|
现代力学概论 |
M |
M |
M |
H |
|
H |
|
M |
|
H |
H |
H |
计算力学 |
H |
|
H |
|
|
M |
|
|
|
|
|
|
实验力学 |
H |
M |
M |
M |
|
|
|
|
H |
H |
M |
M |
振动力学 |
M |
|
|
H |
|
|
|
|
|
|
|
|
流体力学 |
H |
L |
|
|
|
|
|
|
|
|
|
|
基础前沿方向 |
|
M |
M |
H |
M |
M |
M |
M |
M |
M |
M |
M |
工程应用方向 |
H |
M |
M |
|
M |
M |
M |
M |
M |
M |
M |
M |
军事理论与军事技能 |
|
|
|
|
|
|
|
H |
M |
|
|
|
金工实习 |
M |
|
|
|
|
L |
|
L |
|
|
|
|
电工电子实训 |
M |
|
|
|
|
L |
|
L |
|
|
|
|
专业实习 |
|
|
|
|
|
M |
|
|
|
H |
|
|
专业认知实习 |
M |
|
|
|
|
H |
|
H |
M |
M |
|
M |
创新创业 |
|
M |
M |
|
H |
|
|
|
|
|
|
|
机械设计基础课程设计 |
|
|
H |
|
H |
|
|
L |
|
L |
|
L |
力学创新实验 |
H |
|
|
H |
H |
|
|
|
|
L |
|
|
创新设计与制作 |
|
|
H |
|
H |
|
|
|
M |
|
M |
L |
力学建模及仿真实践 |
|
|
H |
|
H |
|
|
|
M |
|
|
L |
科技论文写作与沟通 |
|
|
|
|
|
|
|
|
M |
H |
|
|
先进材料与结构测试技术 |
M |
|
|
M |
H |
|
|
|
|
|
|
|
毕业设计(论文) |
H |
H |
H |
|
H |
M |
M |
|
L |
H |
H |
H |
用符号H、M、L进行标注,H表示关联度高、M表示关联度中、L表示关联度低。
七、责任教师一览表
序号 |
课程名称 |
学分 |
总学时 |
拟授课学院/教师 |
授课学期 |
1 |
毛泽东思想和中国特色社会主义理论体系概论 |
3 |
48 |
马克思主义学院 |
3 |
2 |
思政实践 |
2 |
64 |
马克思主义学院 |
4 |
3 |
思想道德与法治 |
3 |
54 |
马克思主义学院 |
1 |
4 |
形势与政策 |
2 |
32 |
分散进行 |
|
5 |
中国近现代史纲要 |
3 |
54 |
马克思主义学院 |
2 |
6 |
马克思主义基本原理 |
3 |
54 |
马克思主义学院 |
4 |
7 |
习近平新时代中国特色社会主义思想概论 |
2 |
36 |
马克思主义学院 |
6 |
8 |
大学英语 |
8 |
128 |
外国语学院 |
1-4 |
9 |
计算与人工智能概论 |
4 |
80 |
信息科学与工程学院 |
1 |
10 |
体育 |
4 |
144 |
体育学院 |
1-4 |
11 |
高等数学A(1) |
5 |
96 |
数学学院 |
1 |
12 |
高等数学A(2) |
5 |
96 |
数学学院 |
2 |
13 |
线性代数A |
3 |
48 |
数学学院 |
2 |
14 |
概率论与数理统计A |
3 |
48 |
数学学院 |
3 |
15 |
普通物理A(1) |
3 |
64 |
物理与微电子科学学院 |
2 |
16 |
普通物理A(2) |
3 |
64 |
物理与微电子科学学院 |
3 |
17 |
普通物理实验A |
2 |
64 |
物理与微电子科学学院 |
2-3 |
18 |
工程化学 |
2 |
36 |
化学化工学院 |
1 |
19 |
理论力学 |
4 |
66 |
方棋洪等 |
2 |
20 |
材料力学 |
4 |
70 |
任毅如等 |
3 |
21 |
固体力学基础 |
3 |
48 |
任毅如等 |
4 |
22 |
弹性力学 |
4 |
64 |
侯鹏飞 |
5 |
23 |
计算力学 |
4 |
68 |
刘腾喜等 |
6 |
24 |
振动力学 |
4 |
56 |
符文彬、周加喜 |
5 |
25 |
实验力学 |
2 |
66 |
王晓钢、何巍 |
5 |
26 |
流体力学 |
4 |
66 |
邹伟生、胡徐趣、施方成、胡绚 |
6 |
27 |
人工智能与力学 |
2 |
32 |
刘文洋、杨刚 |
7 |
28 |
计算方法 |
2 |
40 |
彭凡等 |
5 |
29 |
现代力学概论 |
2 |
32 |
韦凯等16人 |
5 |
30 |
冲击动力学 |
2 |
32 |
侯淑娟、杨刚 |
7 |
31 |
工程材料 |
2 |
36 |
周惦武、李落星等 |
6 |
32 |
连续介质力学 |
3 |
48 |
毛贻齐、赵岩 |
6 |
33 |
塑性力学 |
3 |
48 |
戴宏亮 |
6 |
34 |
分析力学 |
2 |
32 |
彭凡等 |
7 |
35 |
断裂力学 |
2 |
32 |
王晓钢 |
6 |
36 |
板壳力学 |
2 |
32 |
张思进 |
6 |
37 |
非线性振动 |
2 |
32 |
符文彬等 |
7 |
38 |
多体动力学 |
2 |
40 |
张思进 |
7 |
39 |
计算材料学 |
2 |
40 |
刘播 |
6 |
40 |
计算流体力学 |
2 |
40 |
胡徐趣、施方成 |
7 |
41 |
表面失稳力学 |
2 |
32 |
赵岩 |
7 |
42 |
超材料结构力学 |
2 |
32 |
韦凯 |
6 |
43 |
生物力学基础 |
2 |
32 |
毛贻齐 |
4 |
44 |
现代工程CAE分析 |
2 |
40 |
刘播 |
5 |
45 |
结构力学 |
3 |
48 |
张见明 |
6 |
46 |
复合材料力学与结构设计 |
2 |
32 |
范智超 |
6 |
47 |
结构优化设计 |
2 |
36 |
林森 |
6 |
48 |
机械结构强度学 |
2 |
32 |
王晓钢 |
6 |
49 |
钢结构原理 |
2 |
36 |
符文彬 |
7 |
50 |
钢筋混凝土结构设计基础及CAE分析 |
2 |
36 |
符文彬 |
7 |
51 |
智能材料与结构力学 |
2 |
36 |
赵岩 |
7 |
52 |
结构疲劳与可靠性 |
2 |
32 |
王晓钢 |
7 |
53 |
结构动力学 |
2 |
32 |
方棋洪 |
7 |
54 |
振动控制基础 |
2 |
34 |
周加喜 |
7 |
55 |
数理方法 |
2 |
32 |
彭神佑 |
4 |
56 |
接触力学 |
2 |
32 |
方棋洪、侯鹏飞 |
7 |
57 |
表界面力学 |
2 |
32 |
赵岩 |
6 |
58 |
力学创新实验 |
2 |
64 |
刘伟刚 |
4 |
59 |
创新设计与制作 |
2 |
64 |
任毅如等 |
夏季学期2 |
60 |
科技论文写作与沟通 |
2 |
64 |
力学系 |
7 |
61 |
先进材料与结构测试技术 |
2 |
64 |
杨刚、毛贻齐 |
7 |
62 |
力学建模及仿真实践 |
4 |
128 |
赵岩、李甲、刘播、林森 |
夏季学期3 |
63 |
专业认知实习 |
1 |
32 |
方棋洪 |
2 |
64 |
专业实习 |
2 |
64 |
韦凯 |
6 |
65 |
复变函数与积分变换 |
2 |
32 |
方棋洪、韦凯 |
4 |
66 |
控制工程基础 |
2 |
34 |
钟翔 |
7 |
67 |
增材制造技术(双语) |
2 |
34 |
宋立军 |
6 |
68 |
人体损伤生物力学 |
2 |
34 |
蒋彬辉 |
7 |
69 |
空气动力学 |
2 |
32 |
施方成 |
7 |
70 |
可靠性设计方法 |
2 |
36 |
王晓钢 |
6 |
71 |
军事理论与军事技能 |
3 |
118 |
武装部· |
1-2 |
72 |
金工实习 |
3 |
96 |
现代工程训练中心 |
夏季学期1 |
73 |
电工电子实训 |
2 |
64 |
现代工程训练中心 |
3 |
74 |
机械设计基础课程设计 |
1 |
32 |
刘江南、伍素珍等 |
4 |
75 |
机械工程图学 |
5 |
84 |
李莉、张爱军等 |
1-2 |
76 |
电工电子学 |
3 |
54 |
电气与信息工程学院 |
3 |
77 |
热工学基础 |
2 |
34 |
马寅杰,廖高良 |
4 |
78 |
机械设计基础B |
3 |
50 |
伍素珍、周长江等 |
4 |
79 |
毕业设计(论文) |
10 |
320 |
工程力学系教师 |
8 |
八、专业责任教授
序号 |
姓名 |
职称 |
学历学位 |
专业特长 |
承担授课课程 |
1 |
方棋洪 |
教授 |
研究生 博士 |
微观力学、断裂力学 |
理论力学、断裂力学 |
Engineering Mechanics
(Including Experimental Class of Engineering Mechanics)
I. Introduction
The discipline of mechanics originated from the Mechanics Teaching and Research Section of the Division of Basic Sciences which was founded in 1952. The Department of Engineering Mechanics was established in 1985. The doctoral program in solid mechanics was established in 1998, and the post-doctoral mobile station in mechanics was established in 2003. In 2005, it was awarded the right to confer a doctorate degree in mechanics as a first-level discipline.
This discipline cultivates talents with good humanities, science and engineering literacy, mastering solid and broad basic mechanical theory and system expertise, possessing the application and development capabilities of engineering structural analysis software, and mastering modern mechanics experiment and test technology. This discipline cultivates the students to pay attention to the frontier development of mechanics and the cross-application of knowledge, be able to engage in scientific research, technological innovation and engineering design in the fields like machinery, civil engineering, aerospace, materials, and be capable in systematical and in-depth innovative research for scientific and engineering issues.
The mechanics discipline has integrated mechanics with complex equipment, new materials, aerospace, advanced manufacturing, marine engineering and other fields in the discipline construction for many years. A number of advanced research results have been achieved in nonlinear mechanics, computational mechanics, structural optimization design and reliability, key dynamics and control in major equipment, new material mechanics, smart materials and structural mechanics, fluid mechanics and applications. A large number of outstanding alumnus have been cultivated.
II. Program Objectives
This Program aims at the cultivation of senior research-based and technical talents in engineering mechanics field, who have knowledge of science, engineering and humanities, be good at organizing, coordinating and communicating, have awareness of innovation and global vision; and who, with a sound foundation of engineering structural mechanics analysis knowledge, engineering specialization, modern mechanics testing and measurement technologies, a strong ability of research, application and engineering practice; are qualified to undertake the work of fundamental research, engineering design, technology development, application research, operation and management in mechanical, civil, aerospace and materials engineering fields.
1. Mastering modern mechanics theory, advanced calculation methods and experimental techniques.
2. Having a solid basic knowledge of mathematical mechanics and professional knowledge of system mechanics.
3. Possessing mechanical analysis and research application capabilities, engineering practice.
4. Organization and coordination capacity.
5. Innovation ability and international perspective.
6. Having good humanities literacy, scientific spirit, high sense of social responsibility, and have both ability and political integrity.
III. Graduation Requirements
Students of this degree will require:
1. Engineering Knowledge: An ability to apply knowledge of mathematics, natural science, mechanics fundamentals and engineering specialization to solve complex engineering structural mechanics problems;
2. Problem Analysis: An ability to identify, formulate, analyze and research literature of complex engineering structural mechanics problems reaching substantiated conclusions using first principles of mathematics and natural sciences;
3. Design/development of solutions: An ability to design solutions for complex engineering structural mechanics problems with appropriate considerations of legal, public health, safety, cultural, societal, and environmental issues, and show the sense of innovation during design process;
4. Investigation: An ability to investigate complex engineering structural mechanics problems using scientific principles, scientific methods and modern mechanics testing and measurement technologies to provide valid conclusions via the process of experiment design, data analysis and interpretation, and information synthesis;
5. Modern Tool Use: An ability to create, select and apply appropriate techniques, resources, and modern engineering and IT tools to complex engineering structural mechanics problems, with an understanding of the limitations;
6. Engineering and Society: An ability to rationalize and assess societal, health, safety, legal and cultural issues and the consequent responsibilities involving solutions to complex engineering structural mechanics problems;
7. Environment and Sustainability: An ability to understand and evaluate the impact of professional engineering work in the solution of complex engineering structural mechanics problems on sustainability of society and environment;
8. Ethics: Knowledge of humanities and social sciences, a sense of social responsibility and professional ethics;
9. Individual and Team work: An ability to function effectively in diverse and multi-disciplinary teams;
10. Communication: An ability to communicate effectively with the engineering community and general public on engineering problems, such as being able to comprehend and write effective reports, design documentations, make effective presentations, and give and receive clear instructions, with a global vision, can do communication in the multicultural context;
11. Project Management: An ability to understand and apply engineering management principles and economic decision-making to managing projects in a multi-disciplinary team;
12. Lifelong Learning: An ability to recognize the need and prepare for independent and life-long learning, and to learn and adjust to development.
Matrix of "Program Objectives-Graduation Requirements"
Program Objectives Graduation Requirements |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 Possess a solid scientific and engineering foundation, solid professional knowledge and skills in engineering mechanics, can apply professional knowledge and skills to solve practical problems, have mechanics analysis and research application capabilities, engineering practice and organization and coordination capabilities, innovation capabilities and an international perspective. |
● |
● |
● |
● |
● |
|
|
|
|
|
|
|
2 High-quality talents in the industry or academia in the field of future IoT with forward-looking, strategic, overall, innovative thinking, research capabilities, and international vision. |
|
|
● |
● |
● |
|
|
|
● |
● |
● |
● |
3 Abide by professional ethics, have a correct world outlook, outlook on life, and values, have a good sense of humanity, social responsibility, legal awareness and lifelong autonomous learning, and become a professional advocate with ideals and beliefs. |
|
|
|
|
|
● |
● |
● |
|
● |
|
● |
Notes: ● indicates relevance
IV. Length of Schooling, Graduation Requirements and Degree Awarding
1. The length of schooling is usually 4, with a flexibility of 3-6 years based on the credit system.
2. The minimum credits for the program are 170, which are distributed as follows:
Course Category |
Compulsory General Education |
Introductory Major Courses |
Major Survey Courses |
Compulsory Major Core Courses |
Individualized Electives |
General Education Electives |
Intensive Practice |
Total |
Credits |
34 |
26 |
32 |
17 |
17 |
8 |
36 |
170 |
3. Successful completion of the minimum credits of required compulsory, selective and intensive practice courses, compliance with the requirements specified in National Standards for Students’ Physical Health, and a good and all-round moral, intellectual, physical and aesthetical grounding in addition to a hard-working spirit are required for graduation. Students qualified enough to meet all the requirements of Regulations of Hunan University on the Awarding of Bachelor’s Degree (No. 22 [2018]) will thus be awarded the Bachelor’s Degree of Engineering.
V. Curriculum and Credit Distribution
1. General Courses (34 credits for compulsory courses + 8 credits for elective courses)
The general courses consist of two parts: required courses and elective courses. The general elective courses are to be fulfilled in accordance with “The Implementation Scheme of the General elective courses of Hunan University”. Disciplinary General Education Courses are as follows:
Code |
Course Title |
Credit |
Remarks |
GE01150 |
Introduction to Mao Zedong Thought and the Theory System of Socialism with Chinese Characteristics |
3 |
|
GE01174 |
Introduction to Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era |
2 |
|
GE01185 |
Ideological and Moral Cultivation and Legal Basis |
3 |
|
GE01155 (-162) |
Lectures on Current Affairs and Policies |
2 |
|
GE01153 |
Outline of Modern and Contemporary Chinese History |
3 |
|
GE01154 |
Basic Principles of Marxism |
3 |
|
GE01151 |
Practice of Ideological and Political Theory Course |
2 |
|
GE0101 (-015) |
College English |
8 |
Modular courses for a flexible credit system is offered for the total 8 course credits. Students who get the specified foreign language proficiency test scores or foreign language contest awards may finish only 4 or 6 course credits. |
GE01163 |
Introduction to Computing and Artificial Intelligence |
4 |
|
GE0108 (-092) |
Physical Education |
4 |
|
Total |
34 |
|
2. Core Courses in General Displine (26 credits)
Code |
Course Title |
Credit |
Remarks |
GE03025 |
Advanced Mathematics A (I) |
5 |
|
GE03026 |
Advanced Mathematics A (II) |
5 |
|
GE03003 |
Linear Algebra A |
3 |
|
GE03004 |
Probability and Mathematical Statistics A |
3 |
|
GE03005 |
University Physics A (I) |
3 |
|
GE03006 |
University Physics A (II) |
3 |
|
GE03007 (-008) |
University Physics Experiment A |
2 |
|
ME03001 |
Engineering Chemistry |
2 |
|
Total |
26 |
|
3. Core Courses in General Category (32 credits)
Code |
Course Title |
Credit |
Remarks |
ME04017 |
Mechanical Engineering Graphics (1) |
3 |
|
ME04002 |
Mechanical Engineering Graphics (2) |
2 |
|
ME06148N |
Complex Function and Integral Transformation |
2 |
|
EM06024 |
Mathematical and Physical Methods |
2 |
|
EM04009 |
Fundamentals of Mechanical Design B |
3 |
|
ME04020 |
Theoretical Mechanics |
4 |
|
ME04021 |
Mechanics of Material |
4 |
|
EM04012 |
Foundation of Solid Mechanics |
3 |
|
EM04008N |
Elastic Mechanics |
4 |
|
ME04035 |
Fundamentals of Thermal Engineering |
2 |
|
GE02059 |
Electrotechnics and Electronics |
3 |
|
Total |
32 |
|
4. Core Courses in General Specialty (17 credits)
Code |
Course Title |
Credit |
Remarks |
EM05004 |
Computational Mechanics |
4 |
|
EM05011 |
Vibration Mechanics |
3.5 |
|
EM05012 |
Experimental Mechanics |
3.5 |
|
EM04006 |
Fluid Mechanics A |
4 |
|
EM05013 |
Introduction to Modern Mechanics |
2 |
|
Total |
17 |
|
5.Individualized Electives (17 credits)
University wide elective courses (5 credits)
Code |
Course Title |
Credit |
Remarks |
EM06044 |
Artificial Intelligence and Mechanics |
2 |
|
EM06022 |
Continuum Mechanics |
3 |
|
Module 1: Basic Frontier Direction (12 credits)
Code |
Course Title |
Credit |
Remarks |
EM06021 |
Impact Dynamics (English Language Teaching) |
2 |
|
EM06039 |
Intelligent Materials and Structural Mechanics |
2 |
|
EM06040 |
Contact Mechanics |
2 |
|
EM06041 |
Surface Mechanics |
2 |
|
EM06043 |
Biomechanical Fundamentals |
2 |
|
ME06130 |
Method of Calculation |
2 |
|
EM05006 |
Plastic Mechanics |
3 |
|
EM06023 |
Analytical Mechanics |
2 |
|
EM06011N |
Fracture Mechanics |
2 |
|
EM06025 |
Mechanics of Plate and Shell |
2 |
|
ME06004 |
Multibody Dynamics |
2 |
|
EM06026 |
Computational Methods of Materials |
2 |
|
ME06144 |
Computational Fluid Mechanics |
2 |
|
EM06027 |
Aerodynamics |
3 |
|
ME06131 |
Nonlinear Vibration |
2 |
|
EM06028 |
Surface Instability Mechanics |
2 |
|
EM06029 |
Structural Mechanics of Metamaterials |
2 |
|
Module 2: Engineering application direction (12 credits)
Code |
Course Title |
Credit |
Remarks |
EM06042 |
Reliability Design Method |
2 |
|
ME04019 |
Engineering Materials |
2 |
|
ME06088 |
Additive Manufacturing Technology |
2 |
|
ME06120 |
Biomechanics of Human Injury |
2 |
|
ME04027 |
Fundamentals of Control Engineering |
2 |
|
EM06030 |
CAE Analysis of Modern Engineering |
2 |
|
EM06031 |
Structural Optimization Design |
2 |
|
EM05003 |
Structural Mechanics |
3 |
|
EM06032 |
Composite Material Structural Design |
2 |
|
EM06012 |
Design Foundation and CAE Analysis of Reinforced Concrete Structure |
2 |
|
EM06033 |
Principle of Steel Structure |
2 |
|
EM06034 |
Foundation of Vibration Control |
2 |
|
EM06035 |
Structural Dynamics |
2 |
|
EM06036 |
Mechanical Structural Strength |
2 |
|
EM06037 |
Structural Fatigue and Reliability |
2 |
|
Note: For individualized electives credits, 8 credits can be electives across majors within the university.
6.Intensive Practice (36 credits)
Code |
Course Title |
Credit |
Remarks |
GE09048 (-049) |
Military Theory and Military Training |
3 |
|
GE09057 |
Metalworking Practicum |
3 |
|
GE09055 |
Electric and Electronic Practice Training |
2 |
|
EM10008 |
Specialized Internship |
2 |
|
ME10052 |
Innovation and Entrepreneurship |
2 |
|
ME10050 |
Engineering Cognition Practice |
1 |
|
ME10044 |
Course Design of Mechanical Design |
1 |
|
ME10045 |
Mechanical Innovation Experiment |
2 |
|
ME10046 |
Innovative Design and Manufacture |
2 |
|
EM10013 |
Scientific Paper Writing and Communication |
2 |
|
EM10010 |
Mechanical Modeling and Simulation Practice |
4 |
|
EM10014 |
Testing Technology of Advanced Materials and Structures |
2 |
|
ME10120 |
GraduationDesign (Thesis) |
10 |
|
Total |
36 |
|
VI. Correspondence Matrix of Curriculum System and Graduation Requirements
Matrix of Curriculum System and Graduation Requirements
Course Title |
Graduation requirements |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Introduction to Mao Zedong Thought and the Theory System of Socialism with Chinese Characteristics |
|
|
|
|
|
M |
|
M |
M |
M |
|
|
Introduction to Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era |
|
|
|
|
|
|
H |
H |
M |
M |
|
M |
Ideological and Moral Cultivation and Legal Basis |
|
|
|
|
|
H |
|
M |
M |
M |
|
L |
Lectures on Current Affairs and Policies |
|
|
|
|
|
|
H |
M |
M |
M |
|
H |
Outline of Modern and Contemporary Chinese History |
|
|
|
|
|
M |
|
M |
L |
M |
|
|
Basic Principles of Marxism |
|
|
|
|
|
|
|
M |
M |
H |
M |
M |
Practice of Ideological and Political Theory Course |
|
|
|
|
|
M |
|
M |
H |
H |
|
M |
College English |
|
|
|
|
|
L |
|
M |
M |
H |
|
H |
Introduction to Computing and Artificial Intelligence A |
L |
H |
|
|
H |
|
|
|
M |
|
|
M |
Physical Education |
|
|
|
|
|
|
L |
M |
H |
H |
|
M |
Advanced Mathematics A |
|
H |
|
M |
L |
|
|
|
|
|
|
|
Probability and Mathematical Statistics A |
|
H |
|
M |
L |
|
|
|
|
|
|
|
Linear Algebra A |
|
H |
|
M |
L |
|
|
|
|
|
|
|
University Physics A |
|
H |
|
M |
|
|
|
M |
|
|
|
|
University Physics Experiment A |
|
|
H |
|
M |
|
|
L |
M |
|
|
|
Engineering Chemistry |
|
|
|
|
|
L |
M |
|
|
|
|
|
Mechanical Engineering Graphics |
H |
|
|
|
H |
L |
|
|
|
|
|
|
Complex Function and Integral Transformation |
|
H |
|
M |
L |
|
|
|
|
|
|
|
Mathematical and Physical Methods |
|
H |
|
M |
L |
|
|
|
|
|
|
|
Theoretical Mechanics |
H |
|
|
|
|
|
|
|
|
|
|
|
Material Mechanics |
H |
|
|
|
|
|
|
|
|
|
|
|
Foundation of Solid Mechanics |
H |
H |
|
H |
|
H |
|
|
|
|
|
H |
Elastic Mechanics |
|
M |
|
|
|
|
|
|
|
|
|
|
Fundamentals of Thermal Engineering |
|
|
|
|
|
M |
M |
|
|
|
|
|
Fundamentals of Mechanical Design B |
H |
|
H |
|
H |
M |
|
L |
|
|
|
|
Electrotechnics and Electronics |
H |
|
|
|
|
|
|
|
|
|
|
|
Introduction to Modern Mechanics |
M |
M |
M |
H |
|
H |
|
M |
|
H |
H |
H |
Computational Mechanics |
H |
|
H |
|
|
M |
|
|
|
|
|
|
Vibration Mechanics |
M |
|
|
H |
|
|
|
|
|
|
|
|
Fluid Mechanics A |
H |
L |
|
|
|
|
|
|
|
|
|
|
Experimental Mechanics |
H |
|
|
|
|
M |
|
|
|
|
|
|
Basic Frontier Direction |
|
M |
M |
H |
M |
M |
M |
M |
M |
M |
M |
M |
Engineering application direction |
H |
M |
M |
|
M |
M |
M |
M |
M |
M |
M |
M |
Military Theory and Military Training |
|
|
|
|
|
|
|
H |
M |
|
|
|
Metalworking Practicum |
M |
|
|
|
|
L |
|
L |
|
|
|
|
Electric and Electronic Practice Training |
M |
|
|
|
|
L |
|
L |
|
|
|
|
Specialized Internship |
|
|
|
|
|
M |
|
|
|
H |
|
|
Engineering Cognition Practice |
M |
|
|
|
|
H |
|
H |
M |
M |
|
M |
Innovation and Entrepreneurship |
|
M |
M |
|
H |
|
|
|
|
|
|
|
Curriculum Design of Mechanical Design |
|
|
H |
|
H |
|
|
L |
|
L |
|
L |
Mechanical Innovation Experiment |
H |
|
|
H |
H |
|
|
|
|
L |
|
|
Innovative Design and Manufacture |
|
|
H |
|
H |
|
|
|
M |
|
M |
L |
Mechanical Modeling and Simulation Practice |
|
|
H |
|
H |
|
|
|
M |
|
|
L |
Scientific Paper Writing and Communication |
|
|
|
|
|
|
|
|
M |
H |
|
|
Testing Technology of Advanced Materials and Structures |
M |
|
|
M |
H |
|
|
|
|
|
|
|
Graduation Design (Thesis) |
H |
H |
H |
|
H |
M |
M |
|
L |
H |
H |
H |
Notes: H indicates high-relevance; M, median relevance; and L, low relevance.
VII. Course Instructors
No. |
Course Title |
Credits |
Total Hours |
College/Teacher |
Semester |
1 |
Introduction to Mao Zedong Thought and the Theory System of Socialism with Chinese Characteristics |
3 |
48 |
Marxist School |
3 |
2 |
Practice of Ideological and Political Theory Course |
2 |
64 |
Marxist School |
4 |
3 |
Ideological and Moral Cultivation and Legal Basis |
3 |
54 |
Marxist School |
1 |
4 |
Lectures on Current Affairs and Policies |
2 |
32 |
Decentralized |
|
5 |
Outline of Modern and Contemporary Chinese History |
3 |
54 |
Marxist School |
2 |
6 |
Basic Principles of Marxism |
3 |
54 |
Marxist School |
4 |
7 |
Introduction to Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era |
2 |
36 |
Marxist School |
6 |
8 |
College English |
8 |
128 |
College of Foreign Language |
1-4 |
9 |
Introduction to Computing and Artificial Intelligence |
4 |
80 |
College of Computer Science and Electronic Engineering |
1 |
10 |
Physical Education |
4 |
144 |
Physical Education Institute |
1-4 |
11 |
Advanced Mathematics A (1) |
5 |
96 |
School of Mathematics |
1 |
12 |
Advanced Mathematics A (2) |
5 |
96 |
School of Mathematics |
2 |
13 |
Linear Algebra A |
3 |
48 |
School of Mathematics |
2 |
14 |
Probability and Mathematical Statistics A |
3 |
48 |
School of Mathematics |
3 |
15 |
University Physics A (I) |
3 |
64 |
School of Physics and Electronics |
2 |
16 |
University Physics A (II) |
3 |
64 |
School of Physics and Electronics |
3 |
17 |
University Physics Experiment A |
2 |
64 |
School of Physics and Electronics |
2-3 |
18 |
Engineering Chemistry |
2 |
36 |
School of Chemistry and Chemical Engineering |
1 |
19 |
Theoretical Mechanics |
4 |
66 |
Fang Qihong and others |
2 |
20 |
Material Mechanics |
4 |
70 |
Ren Yiru and others |
3 |
21 |
Foundation of Solid Mechanics |
3 |
48 |
Ren Yiru and others |
4 |
22 |
Elastic Mechanics |
4 |
64 |
Hou Pengfei |
5 |
23 |
Computational Mechanics |
4 |
68 |
Liu Tengxi and others |
6 |
24 |
Vibration Mechanics |
3.5 |
56 |
Fu Wenbin, Zhou Jiaxi |
5 |
25 |
Experimental Mechanics |
3.5 |
66 |
Wang Xiaogang, He Wei |
5 |
26 |
Fluid Mechanics |
4 |
66 |
Zou Weisheng, Hu Xuqu, Shi Fangcheng, Hu Xuan |
6 |
27 |
Artificial Intelligence and Mechanics |
2 |
32 |
Liu Wenyang, Yang Gang |
7 |
28 |
Method of Calculation |
2 |
40 |
Peng Fan |
5 |
29 |
Introduction of Modern Mechanics |
2 |
32 |
Wei Kai and others |
5 |
30 |
Impact Dynamics (English Language Teaching) |
2 |
32 |
Hou Shujuan, Yang Gang |
7 |
31 |
Engineering Materials |
2 |
36 |
Zhou Dianwu, Li Luoxing and others |
4 |
32 |
Continuum Mechanics |
3 |
48 |
Mao Yiqi, Zhao Yan |
6 |
33 |
Plastic Mechanics |
3 |
48 |
Dai Hongliang |
6 |
34 |
Analytical Mechanics |
2 |
32 |
Peng fan and others |
7 |
35 |
Fracture Mechanics |
2 |
32 |
Wang Xiaogang |
6 |
36 |
Mechanics of Plate and Shell |
2 |
32 |
Zhang Sijin |
6 |
37 |
Nonlinear Vibration |
2 |
32 |
Fu Wenbin and others |
7 |
38 |
Multibody Dynamics |
2 |
40 |
Zhang Sijin |
7 |
39 |
Computational Methods of Materials |
2 |
40 |
Liu Bo |
6 |
40 |
Computational Fluid Dynamics |
2 |
40 |
Hu Xuqu, Shi Fangcheng |
7 |
41 |
Surface Instability Mechanics |
2 |
32 |
Zhao Yan |
7 |
42 |
Structural Mechanics of Metamaterials |
2 |
32 |
Wei Kai |
6 |
43 |
Biomechanical Fundamentals |
2 |
32 |
Mao Yiqi |
4 |
44 |
Modern Engineering CAE Analysis |
2 |
40 |
Liu Bo |
5 |
45 |
Structural Mechanics |
3 |
48 |
Zhang Jianming |
6 |
46 |
Composite Material Structural Design |
2 |
32 |
Fan Zhichao |
6 |
47 |
Structural Optimization Design |
2 |
36 |
Lin Sen |
6 |
48 |
Mechanical Structure Strength |
2 |
32 |
Wang Xiaogang |
6 |
49 |
Principle of Steel Structure |
2 |
36 |
Fu Wenbin |
7 |
50 |
Design Foundation and CAE Analysis of Reinforced Concrete Structure |
2 |
36 |
Fu Wenbin |
7 |
51 |
Intelligent Materials and Structural Mechanics |
2 |
36 |
Zhao Yan |
7 |
52 |
Structural Fatigue and Reliability |
2 |
32 |
Wang Xiaogang |
7 |
53 |
Structural Dynamics |
2 |
32 |
Fang Qihong |
7 |
54 |
Vibration Control Foundation |
2 |
34 |
Zhou Jiaxi |
7 |
55 |
Mathematical and Physical Methods |
2 |
32 |
Peng Shenyou |
4 |
56 |
Contact Mechanics |
2 |
32 |
Fang Qihong, Hou Pengfei |
7 |
57 |
Surface Mechanics |
2 |
32 |
Zhao Yan |
6 |
58 |
Mechanical Innovation Experiment |
2 |
64 |
Liu Weigang |
4 |
59 |
Innovative Design and Manufacture |
2 |
64 |
Ren Yiru |
Summer term 2 |
60 |
Scientific Paper Writing and Communication |
2 |
64 |
Department of Mechanics |
7 |
61 |
Testing Technology of Advanced Materials and Structures |
2 |
64 |
Yang Gang, Mao Yiqi |
7 |
62 |
Mechanical Modeling and Simulation Practice |
4 |
128 |
Zhao Yan, Li Jia, Liu Bo, Lin Sen |
Summer term 3 |
63 |
Engineering Cognition Practice |
1 |
32 |
Fang Qihong |
2 |
64 |
Specialized Internship |
2 |
64 |
Wei Kai |
6 |
65 |
Complex Function and Integral Transformation |
2 |
32 |
Fang Qihong, Wei Kai |
4 |
66 |
Fundamentals of Control Engineering |
2 |
34 |
Zhong Xiang |
7 |
67 |
Additive Manufacturing Technology |
2 |
34 |
Song Lijun |
6 |
68 |
Biomechanics of Human Injury |
2 |
34 |
Jiang Binhui |
7 |
69 |
Aerodyanmics |
3 |
48 |
Shi Fangcheng |
7 |
70 |
Reliability Design Method |
2 |
36 |
Wang Xiaogang |
6 |
71 |
Military Theory and Military Training |
3 |
118 |
Armed Forces Department |
1-2 |
72 |
Metalworking Practicum |
3 |
96 |
Engineering Training Center |
Summer term 1 |
73 |
Electric and Electronic Practice Training |
2 |
64 |
Engineering Training Center |
3 |
74 |
CurriculumDesignof Mechanical Design |
1 |
32 |
Liu Jiangnan, Wu Suzhen and others |
4 |
75 |
Mechanical Engineering Graphics |
5 |
84 |
Li Li, Zhang Aijun and others |
1-2 |
76 |
Electrotechnics and Electronics |
3 |
54 |
College of Electrical and Information Engineering |
3 |
77 |
Fundamentals of Thermal Engineering |
2 |
34 |
Ma Yinjie, Liao Gaoliang and others |
4 |
78 |
Fundamentals of Mechanical Design B |
3 |
50 |
Wu Suzhen, Zhou Changjiang and others |
4 |
79 |
GraduationDesign (Thesis) |
10 |
320 |
Teachers in DepartmentofEngineering Mechanics |
8 |
VIII. Program Chief Professor
No. |
Name |
Title |
Education |
Research Areas |
Course |
1 |
Fang Qihong |
Professor |
Ph.D. |
Micromechanics, Fracture Mechanics |
Theoretical mechanics A, Fracture Mechanics |